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During my teen years I read a book about the Z80 processor that had a few paragraphs in the back that 
described using an EPROM as a 7 segment display decoder in order to have custom display patterns. 
Recently during my Z80 project I remembered this information while I was considering address 
decoding and programmable logic.

This method can be achieved with a standard ROM's* and a compatible programmer. For this paper I 
will be using a M27C256B a 32Kbyte EPROM from Stmicro as my example. The principles used for 
this EPROM should be identical to other ROM's available, as long as they can be directly addressed 
and give a direct data output then it should work.
*EPROM, PROM, ROM, FlashROM (All must be the parallel variety)

This EPROM has 15 address lines and 8 data lines, when we use EPROM's as combinational logic, we 
use the address lines as inputs and the data lines as outputs. Most EPROM's run at TTL level so it will 
be perfect for decoding logic in a computer circuit. The speed of EPROM's vary depending on the 
manufacturer and model number, this you would have to check in the datasheet for the device you plan 
to use, usually older the device the slower it is. A modern FlashROM would generally be faster than the
older EPROM but you would have to be careful about mixing TTL and LVTTL standards, this is 
something you would have to check with in the device's datasheet.

In order to use this as combinational logic we first need to decide what we will be doing with each 
output line (data lines). We start by determining how many outputs are going to be needed, then we 
create a Boolean equation for each output line using the address lines as inputs. We then translate the 
Boolean equations into a truth tables, combine these truth tables into a single binary mapping which 
will then be programmed into the ROM.

Keep in mind that the number of outputs you use will not increase the complexity and size of the binary
mappings, but for every extra input (address line) you use, you double the size of the binary mapping.



Example 1.

Lets do an example using a single gate, with 2 inputs and 1 output. We will make an AND gate.
Inputs: A0, A1 Outputs: D0

Now we convert the Boolean equation into a truth table.
D0=A0* A1

A1 A0 D0

0 0 0

0 1 0

1 0 0

1 1 1

Converting the truth table to a binary mapping is simply finding where the address of the mapping has 
the same matching configuration as the address lines used for input, then taking the output bit and using
setting the same bit on the data line of the mapping. Due to the frequency the lower address lines 
change at, the equations that use those lines will be duplicated many times.

So the truth table above will translate to the following.

Address Data

000 0000 0000 0000 0000 0000

000 0000 0000 0001 0000 0000

000 0000 0000 0010 0000 0000

000 0000 0000 0011 0000 0001

000 0000 0000 0100 0000 0000

000 0000 0000 0101 0000 0000

000 0000 0000 0110 0000 0000

000 0000 0000 0111 0000 0001

000 0000 0000 1000 0000 0000

000 0000 0000 1101 0000 0000

The bits in green are taken from the truth table, you can see that it's repeated as we go along. If you are 
only using a few inputs, then you can ground the unused inputs and not have to repeat the pattern 
throughout the entire address range, this is helpful if you are translating this by hand.



Example 2.

Building on the first example, we will add an OR gate into the device
Inputs: A2, A3 Outputs: D1

Now we convert the Boolean equation into a truth table.
D1=A2+A3

A3 A2 D1

0 0 0

0 1 1

1 0 1

1 1 1

So the truth table above will translate to the following adding on to what has already been used.

Address Data

000 0000 0000 0000 0000 0000

000 0000 0000 0001 0000 0000

000 0000 0000 0010 0000 0000

000 0000 0000 0011 0000 0001

000 0000 0000 0100 0000 0010

000 0000 0000 0101 0000 0010

000 0000 0000 0110 0000 0010

000 0000 0000 0111 0000 0011

000 0000 0000 1000 0000 0010

000 0000 0000 1001 0000 0010

000 0000 0000 1010 0000 0010

000 0000 0000 1011 0000 0011

000 0000 0000 1100 0000 0010

000 0000 0000 1101 0000 0010

000 0000 0000 1110 0000 0010

000 0000 0000 1111 0000 0011

The new gate's data is in orange and the first gate's data is in green as before.

You can see from the mapping that the data from the truth table translates easily. You keep building up 
the mapping in this fashion until you have accounted for all inputs and outputs that are being used.
This method isn't limited to 2 input gates, or even to just single gates themselves, you can convert an 
entire circuit into this form as long as it's combinational.



There are ways to synthesize a sequential logic setup by tying some of the outputs to the inputs. This 
has been demonstrated by Dave Jones of the EEVBlog : http://alternatezone.com/electronics/plc.htm, I 
have not done much research into this myself.

Having done a few test setups of my own, I decided to write some software to convert Boolean 
equations into the mapping which you can export as a binary file to burn to an EPROM. This is 
currently limited to 8-bit ROM's and up to 14-bit addressing for now, I may expand it later to allow 
greater word sizes and larger capacity ROM's.

You can find it here: http://39k.ca/2016/05/13/using-eproms-and-simple-combinational-logic/

This software is still in development and may still have a few bugs in it, so there is no warranty with it. 
Use at your own risk.
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